Sequence-dependent structural variations of hammerhead RNA enzymes.

نویسندگان

  • H A Heus
  • O C Uhlenbeck
  • A Pardi
چکیده

The discovery of in vivo catalytic activity for the hammerhead RNA self-cleaving domain has led to the development of a new class of sequence-specific RNA endonucleases. Two such ribozymes have been synthesized using in vitro transcription with T7 polymerase and their structures have been studied by optical spectroscopy, nuclear magnetic resonance and nondenaturing gel electrophoresis. These data show the presence of a stable hairpin consisting of a double helical stem and a tetranucleotide loop in both RNA enzymes. Additional structure, with different stabilities, is also observed in both RNA enzymes. The half-lives for cleavage of the complementary RNA substrates by these two RNA enzymes have been previously shown to differ by a factor of 50. The data presented here suggest that this rate difference may be a result of the formation of catalytically inactive conformations in the RNA enzyme which interfere with formation of the enzyme-substrate complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hammerhead Ribozyme: A Long History for a Short RNA.

Small nucleolytic ribozymes are a family of naturally occurring RNA motifs that catalyse a self-transesterification reaction in a highly sequence-specific manner. The hammerhead ribozyme was the first reported and the most extensively studied member of this family. However, and despite intense biochemical and structural research for three decades since its discovery, the history of this model r...

متن کامل

A core folding model for catalysis by the hammerhead ribozyme accounts for its extraordinary sensitivity to abasic mutations.

Introducing abasic nucleotides at each of 13 positions in the conserved core of the hammerhead ribozyme causes a large decrease in the extent of catalysis [Peracchi, A., et al. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 11522]. This extreme sensitivity to structural defects is in contrast to the behavior of protein enzymes and larger ribozymes. Several additional differences in the behavior of th...

متن کامل

Identification of Hammerhead Ribozymes in All Domains of Life Reveals Novel Structural Variations

Hammerhead ribozymes are small self-cleaving RNAs that promote strand scission by internal phosphoester transfer. Comparative sequence analysis was used to identify numerous additional representatives of this ribozyme class than were previously known, including the first representatives in fungi and archaea. Moreover, we have uncovered the first natural examples of "type II" hammerheads, and ou...

متن کامل

Use of cis- and trans-ribozymes to remove 5' and 3' heterogeneities from milligrams of in vitro transcribed RNA.

In vitro transcription with phage T7 RNA polymerase is the method of choice for obtaining multi-milligram quantities of RNA for structural studies. However, run-off transcription with this enzyme results in molecules that are heterogeneous at their 3′-, and depending on template sequence, 5′-termini. For transcripts longer than ∼50 nucleotides (nt), these impurities cannot be removed by prepara...

متن کامل

Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies.

In vitro transcription using bacteriophage RNA polymerases and linearised plasmid or oligodeoxynucleotide templates has been used extensively to produce RNA for biochemical studies. This method is, however, not ideal for generating RNA for crystallisation because efficient synthesis requires the RNA to have a purine rich sequence at the 5' terminus, also the subsequent RNA is heterogenous in le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 18 5  شماره 

صفحات  -

تاریخ انتشار 1990